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1. Introduction

In 1981 Ginsparg and Wilson formulated a condition [1] to be satisfied by the lattice Dirac

operator in order to have the physical consequences of chiral symmetry on the lattice. The

derivation of this condition is based on renormalization group (RG) considerations, but the

result is more general. Indeed, the GW relation is satisfied not only by the fixed point [2],

but also by the overlap [3] and the domain-wall operator after dimensional reduction [4].

The Dirac operators in the latter two cases are not related to RG ideas.

The GW condition is a non-linear relation for the lattice Dirac operator reflecting the

fact that concerning chiral symmetry the physical content of the classical lattice theory is

the same as that in the continuum. It was observed only many years later that an exact

symmetry transformation exists on the lattice as well [5].

Discretizing a field theory by repeated RG block transformation – or equivalently, by

’blocking out of continuum’ [6] — has the advantage that all symmetries of the continuum

theory will be inherited by the lattice action — even those which are explicitly broken

by the block transformation. The symmetry transformations are, however, different from

those in the continuum. We present here a general technique and a streamlined procedure

to find the form of the symmetry transformations and the symmetry conditions (like the

GW relation).

We have to emphasize that talking about a symmetry transformation on the lattice

we mean a symmetry of the lattice action, i.e. the classical field theory. In the quantum

theory this transformation enters as a change of variable in the path integral which might

induce a non-trivial contribution to the Ward identity by the integration measure.

Not all internal symmetries of the continuum theory can be kept by the block trans-

formation. Consider, as an example, the chiral symmetry. For a continuum action and a

block transformation which both have an explicit γ5-invariance, the resulting lattice action

will also be γ5-invariant. But due to the existence of the chiral anomaly, this action cannot

be an acceptable one — it has to be either non-local or has to describe extra unwanted

degrees of freedom (doublers) [7]. This is what happens in the limit when the coefficient of
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the natural block transformation goes to infinity. In this limit the blocking becomes chiral

invariant, but at the same time the corresponding lattice action ceases to be local [8].

This paper is motivated by some unsolved theoretical problems in lattice regularized

chiral gauge theories. In spite of the great progress during the last years [9] an important

problem remains: the relative weight between the different topological sectors is undefined.

This situation might be related to different technical problems. Although the chiral invari-

ant vector theory has a controlled RG background, the steps towards a chiral theory are

not related to RG anymore. The projectors [10] are introduced by hand and, seemingly

unavoidably, they break CP and T symmetry [11]. Further, the fermion number anomaly1

enters in an unusual way: the different topological sectors have different number of degrees

of freedom on the lattice. These technical issues might be related to the problem men-

tioned above. A different strategy would be to start with a fermion number violating block

transformation, which makes the relation between the continuum and lattice symmetries

non-trivial. The systematic approach discussed here might be a useful tool in this and

similar problems.

2. Free massless fermions

Since fermions enter quadratically even in the presence of gauge fields, most of the equations

below remain valid in the presence of interactions as well.

The block transformation is a Gaussian integral which is equivalent to a formal mini-

mization problem:

χDχ = min
ψ,ψ

{
ψDψ +

(
χ− ψω†

)
(χ− ωψ)

}
(2.1)

where the fermion fields ψx and χn live in the continuum and on the lattice respectively,

ωnx is the blocking matrix, Dxx′ = (γµ∂µ)xx′ and Dnn′ are the continuum and lattice Dirac

operators. For the blocking we take a flat, non-overlapping averaging

ωnx =

{
1 if x ∈ block n ,

0 otherwise .
(2.2)

With this choice one has
∑

x ωnxω
†
xn′ = δnn′ , i.e. ωω† = 1.

The minimizing fields ψ0 = ψ0(χ) and ψ0 = ψ0(χ) in eq. (2.1) are given by

ψ0(χ) = A−1ω†χ,

ψ0(χ) = χωA−1 (2.3)

where

A = D + ω†ω. (2.4)

Inserting eq. (2.3) into eq. (2.1) gives the lattice Dirac operator

D = 1− ωA−1ω†. (2.5)

1We mean here the global vector anomaly of a chiral gauge theory free of gauge anomalies.
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From the equations above it is easy to derive the following useful relations which will be

used repeatedly in this work

ωψ0(χ) = (1−D)χ , ψ0(χ)ω† = χ(1−D) ,

Dψ0(χ) = ω†Dχ , ψ0(χ)D = χDω . (2.6)

The Ginsparg-Wilson relation can be obtained then from eq. (2.5) by using {D, γ5} = 0

and the relations above2:

{D, γ5} = 2Dγ5D . (2.7)

We formulate now a general statement on the form of infinitesimal symmetry trans-

formations on the lattice.

Statement

Let δψ and δψ be the change of the corresponding continuum fields under an infinitesimal

symmetry transformation which leaves invariant the continuum action ψDψ.

Define the infinitesimal change of the lattice fields by

δχ = ωδψ0(χ) , δχ = δψ0(χ)ω† . (2.8)

Then the lattice action χDχ is invariant under this infinitesimal symmetry transformations.

Proof

One can use the explicit equations above to show the statement.

Replace ψ0(χ) by ψ0(χ + δχ) − δψ0(χ) and ψ0(χ) by ψ0(χ + δχ) − δψ0(χ) on the

r.h.s of eq. (2.1), where δψ0(χ) is an infinitesimal continuum symmetry transformation of

ψ0(χ) and δχ is a not yet defined infinitesimal change of χ. Since ψ0(χ+ δχ) − δψ0(χ) =

ψ0(χ) + infinitesimallysmall and ψ0(χ) is the minimum of the r.h.s. of eq. (2.1), the change

of the r.h.s. is quadratically small:

χDχ = ψ0(χ+ δχ)Dψ0(χ+ δχ)+[
(χ−

(
ψ0(χ+ δχ)− δψ0(χ)

)
ω†
]

[(χ− ω (ψ0(χ+ δχ)− δψ0(χ))] +

quadratically small (2.9)

where, in the first term on the r.h.s. of eq. (2.9), we used that δψ0(χ) is a symmetry

transformation in the continuum.

We identify now

δχ = ωδψ0(χ) , δχ = δψ0(χ)ω† , (2.10)

which leads to

χDχ = ψ0(χ+ δχ)Dψ0(χ+ δχ) +

+
[
χ+ δχ− ψ0(χ+ δχ)ω†

]
[χ+ δχ− ωψ0(χ+ δχ)] (2.11)

up to quadratically small corrections. Comparing eq. (2.1) and eq. (2.11) we obtain

(χ+ δχ)D(χ+ δχ) = χDχ (2.12)

i.e. eq. (2.10) is a symmetry transformation of the lattice action χDχ.

2Note that with our choice of the coefficients in eq. (2.1) the factor 2 appears in the GW relation. This

is, of course, just a convention.
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3. Symmetry transformations of the lattice action, examples

U(1) axial transformation. The standard infinitesimal axial rotation in the continuum

reads

δψ0(χ) = iεγ5ψ0(χ), δψ0(χ) = iεψ0(χ)γ5 . (3.1)

The corresponding lattice transformation has the form

δχ = iεγ5ωψ0(χ) = iεγ5(1−D)χ ,

δχ = iεψ0(χ)γ5ω
† = iεχ(1−D)γ5 , (3.2)

where we used eq. (2.8) and eq. (2.6). These transformations have the well known form

found by Lüscher [5]. Notice, however that the axial transformation in the continuum is

not unique. The following transformation, for example, also leaves the continuum action

invariant

δψ0(χ) = iεγ5(1− αD)ψ0(χ), δψ0(χ) = iεψ0(χ)(1 + αD)γ5 . (3.3)

The associated lattice transformation reads

δχ = iεγ5 (1− (1 + α)D)χ

δχ = iεχ (1− (1− α)D) γ5 . (3.4)

The α = 1 case3 is special since γ5 and γ̂5 = γ5(1− 2D), (for which γ̂2
5 = 1) are candidates

to build the lattice L/R projectors for χ and χ, respectively [10]. Notice the asymmetry

between the transformations of χ and χ, which is the source of CP violation in the present

formulation of chiral gauge gauge theories mentioned in the introduction.

U(1) vector transformation. The standard infinitesimal vector rotation in the contin-

uum δψ0(χ) = iεψ0(χ), δψ0(χ) = −iεψ0(χ) implies the lattice transformation

δχ = iε(1 −D)χ, δχ = −iεχ(1−D) (3.5)

while the transformation δψ0(χ) = iε(1 − αD)ψ0(χ), δψ0(χ) = −iεψ0(χ)(1 − αD) leads to

δχ = iε (1− (1 + α)D)χ

δχ = −iεχ (1− (1 + α)D) . (3.6)

For α = 0 the continuum, while for α = −1 the lattice transformation has the standard

form.

Considering finite transformations, note that for α = 0 in eqs. (3.3), (3.4) the trans-

formation exp(itγ5(1 − D)) is not compact (it is not 2π-periodic in t) as opposed to the

corresponding transformation exp(itγ5) in the continuum. On the other hand, for α = 1

(or α = −1) the lattice transformation exp(itγ̂5) corresponding to eq. (3.4) is compact,

while its continuum counterpart is not.

3as well as the α = −1 case
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Infinitesimal translation. In the continuum we have δψ0(χ) = ε∂̂µψ0(χ), δψ0(χ) =

εψ0(χ)∂̂†µ, where
(
∂̂µ

)
xy

= ∂xµδ(x − y). Our general procedure leads to the lattice trans-

formations

δχ = εω∂̂µψ0(χ)

δχ = εψ0(χ)∂̂†µω
† . (3.7)

Using [D, ∂̂µ] = 0 it is a simple exercise to show explicitly that the lattice action is invariant

under this infinitesimal translation.

What was shown above remains valid also in the presence of gauge fields. In the RG

approach, eq. (2.1), the lattice Dirac operator D lives on some lattice gauge field background

V , while on the r.h.s. the continuum Dirac operator D and the blocking ω are defined on a

corresponding continuum gauge field, which is obtained from V by a similar minimization

procedure involving only gauge fields [12].

4. Generalization to interactive theories: the non-linear σ model

We illustrate the generalization of the technique used above on the example of the d = 2

nonlinear sigma model. The equation analogous to eq. (2.1) reads in this case

A(~R) = min
{~S}

(
A(~S) + T

(
~R, ω(~S)

))
(4.1)

where T is the block transformation, ω(~S) defines the averaging, A(~S) is the continuum

action, while A( ~R) is the (fixed point [13]) action on the lattice. For the averaging one

might take the flat, non-overlapping averaging in eq. (2.2). A simple example for T is

T = 2κ
∑

n

(
~Rn −

(ω~S)n

|(ω~S)n|

)2

= 4κ
∑

n

(
1− ~Rnω̃(~S)n

)
(4.2)

where we introduced the notation

ω̃(~S)n =
(ω~S)n

|(ω~S)n|
, ω̃(~S)2 = 1. (4.3)

For notational simplicity we shall take 4κ = 1. The minimizing field in eq. (4.1) is denoted

by ~S0 = ~S0(~R). Consider now an infinitesimal symmetry transformation of the continuum

action (infinitesimal translation, for example) acting on the minimizing field ~S0(~R) →
~S0(~R) + δ~S0(~R). Introduce the notation

ω̃(~S0 + δ~S0) = ω̃(~S0) + δω̃,
(
δω̃, ω̃(~S0)

)
= 0. (4.4)

Following the procedure used for fermions above, we compensate the change of the blocking

term T by changing the lattice configuration ~R→ ~R+ δ ~R
(
δ ~R, ω̃(~S0(~R))

)
+
(
~R, δω̃

)
= 0, (~R, δ ~R) = 0 (4.5)
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where we used eq. (4.2). The solution of eq. (4.5) can be written as

δ ~R = δω̃
(
ω̃, ~R

)
− ω̃

(
δω̃, ~R

)
. (4.6)

If δ~S0(~R) is a symmetry transformation in the continuum, then A( ~R + δ ~R) = A(~R), i.e.

δ ~R in eq. (4.6) is a symmetry transformation on the lattice.
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